Forecasting Volatility: A Reality Check Based on Option Pricing, Utility Function, Value-at-Risk, and Predictive Likelihood
نویسندگان
چکیده
We analyze the predictive performance of various volatility models for stock returns. To compare their performance, we choose loss functions for which volatility estimation is of paramount importance. We deal with two economic loss functions (an option pricing function and an utility function) and two statistical loss functions (a goodness-of-fit measure for a Value-at-Risk (VaR) calculation and a predictive likelihood function). We implement the tests for superior predictive ability of White (2000) and Hansen (2001). We find that, for option pricing, simple models like the Riskmetrics exponentially weighted moving average (EWMA) or a simple moving average, which do not require estimation, perform as well as other more sophisticated specifications. For a utility based loss function, an asymmetric quadratic GARCH seems to dominate, and this result is robust to different degrees of risk aversion. For a VaR based loss function, a stochastic volatility model is preferred. Interestingly, the Riskmetrics EWMA model, proposed to calculate VaR, seems to be the worst performer. For the predictive likelihood based loss function, modeling the conditional standard deviation instead of the variance seems to be a dominant modeling strategy.
منابع مشابه
Modeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملStochastic Models for Pricing Weather Derivatives using Constant Risk Premium
‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...
متن کاملPresenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets
Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملForecasting Extreme Volatility of FTSE-100 With Model Free VFTSE, Carr-Wu and Generalized Extreme Value (GEV) Option Implied Volatility Indices
Since its introduction in 2003, volatility indices such as the VIX based on the model-free implied volatility (MFIV) have become the industry standard for assessing equity market volatility. MFIV suffers from estimation bias which typically underestimates volatility during extreme market conditions due to sparse data for options traded at very high or very low strike prices, Jiang and Tian (200...
متن کامل